Casuality and Programme Evaluation Lecture V: Difference-in-Differences II

Dr Martin Karlsson

University of Duisburg-Essen

Summer Semester 2017

Outline

Recap of Last Lecture

2 Introduction

3 Test Size

- Within-Group Correlation
- Serial Correlation
- Brewer et al (2013)

Low Power

- 5 Feasible GLS: A Combined Approach
- **6** Summary and Conclusions

Recap of Last Lecture

- DID is a well-established, powerful and simple technique.
- Simplest case: **common time trend** is sufficient to achieve consistency.
- The basic 2×2 model can be extended in various directions:
 - Multiple groups, multiple periods
 - Models with covariates
 - Multiple dimensions (triple difference etc).
- Extensions for panel data and limited dependent variables exist, but can be more tricky.
- **Synthetic control methods** are a convenient way to define credible control groups at the aggregate level.
- The **changes-in-changes** model relaxes assumptions from the standard DID model; bases identification on monotonicity and invariance in the distribution of unobservables.

Introduction

- Recent literature on inference in DID designs focus on the problem of **incorrect test size**.
- In fact, such designs give rise to potential sources of correlation between observations.
- Two main issues:
 - Treatment status varies only at the group level ('clustering problem').
 - Treatment status typically highly correlated over time ('**policy** autocorrelation').
- If these issues are ignored, inference may be misleading.
- Most recent literature shifts the focus to **low power** issues.
- How to address the power-size trade-off?

Introduction

Type I and Type II Errors

Figure 1. Type I and Type II Errors.

Problems with Standard Errors

- Recall from lecture 2: grouped residuals inflate standard errors.
- Consider the simple bivariate case

$$Y_{ig} = \alpha + \beta x_{ig} + e_{ig}$$

• where there are G groups and common group errors:

$$e_{ig} = v_g + \eta_{ig}$$

- Component v_g captures that group members are exposed to the same **environment**: classroom, teacher, weather...
- The intraclass correlation coefficient thus given by

$$\rho_e = \frac{\sigma_v^2}{\sigma_v^2 + \sigma_\eta^2}$$

• ...but the OLS estimator assumes iid residuals ($v_g = 0$).

The Moulton Factor

• The Moulton factor: ratio between correct sampling variance and OLS variance.

$$\frac{\mathbb{V}(\hat{\beta})}{\mathbb{V}_{c}(\hat{\beta})} = 1 + \left[\frac{\mathbb{V}(n_{g})}{\bar{n}} + \bar{n} - 1\right]\rho_{x}\rho_{e}$$
(1)

$$\rho_x = \frac{\sum_g \sum_j \sum_{i \neq j} (x_{ig} - \bar{x}) (x_{jg} - \bar{x})}{\mathbb{V} (x_{ig}) \sum_n n_g (n_g - 1)}$$
(2)

- Hence, the standard errors get inflated whenever
 - Intraclass correlation is high (ρ_e) .
 - Group size varies considerably $(\mathbb{V}(n_g))$.
 - High intraclass correlation also in $x_{ig}(\rho_x)$
- At least two of these apply by design in a DID setting.

Two Dimensions of the Problem

- The general conclusion: OLS underestimates standard errors \Rightarrow correction needed.
- Two dimensions:
 - (A) Within-group correlation. Shared environment leads to correlated shocks.
 - (B) **Serial correlation**. Outcomes typically exhibit persistence (earnings, employment, health...).
- Additional complication: Number of groups and time periods typically small.
- Inference based on G or T approaching infinity.

A. Within-Group Correlation

- Donald and Lang (*Rev. Econ. Statist.* 2007) discuss inference in DID and related models.
- Focus on within-group correlation of outcomes.
- Problem: some explanatory variables (like the treatment indicator) are **constant** among all members of a group.
- Three traditional solutions:
 - RE FGLS estimation. Estimate covariance matrix, reweight.
 - Correcting standard errors using covariance matrix with common group errors (Moulton 1990).
 - Oluster (Liang and Zeger 1986).
- D&L: These procedures based on $G \to \infty$.
- Consider instead aggregating and drawing inference using T_{G-2} .

B. Serial Correlation, an Example

Bertrand et al (2004) utilise a standard dataset (the Current Population Survey - CPS):

$$Y_{ist} = A_s + B_t + \tau D_{st} + X_{ist}\beta + \epsilon_{ist}$$
(3)

where

- Y_{ist} Log weekly earnings of females between 25-50 at t 1979 to 2000 in state s.
- D_{st} Treatment indicator = 1 if state s is affected in year t.
- A_s State fixed effects.
- B_t Year fixed effects.
- X_{ist} Individual-level control variables.
- ϵ_{ist} Residual variation.
- Y_{is} exhibits strong positive serial correlation: $\rho_1 = 0.51$, $\rho_2 = 0.44$ and $\rho_3 = 0.33$.
- In total $50 \times 21 = 1,050$ state-year cells.

The Problem

- OLS gives an **unbiased** and **consistent** estimate $\hat{\tau}$ of effect.
- Bertrand et al run Monte Carlo simulations using **placebo law changes**.
- With consistent standard errors, false treatment effect should be observed in roughly 5% of cases.
- But standard errors are often inconsistent.
- H_0 is rejected in 67.5% of cases when neither within-group correlation nor serial correlation are taken into account.
- Taking within-group correlation into account (cluster or aggregate): *H*₀ is rejected in 44% of cases.
- Serial correlation can matter a lot!
- Many approaches to address the problem; none is uniformly better.

Serial Correlation: Solutions

To evaluate possible solutions to the serial correlation problem, Bertrand et compare the simulated performance of five different techniques:

- **9** Parametric methods (AR(p)): perform poorly.
- Block bootstrap: (sample clusters and calculate t statistic) performs well when the no. of groups is large.
- Aggregate (collapse) time series information: reliable also when the no. of groups is small, on the other hand power is relatively low.
- Empirical variance-covariance matrix: performs well in panels with high no. of groups, but assumes cross-sectional homoskedasticity (cf. Hausman & Kuersteiner, 2008).
- Arbitrary (clustered) variance-covariance matrix: allows for an arbitrary correlation patterns over time. Performs well for moderate no. of groups; for small no. of groups d.o.f. adjustment needed.

The Clustered Covariance Matrix Estimator

- The empirical VCV estimator is consistent only under homoskedasticity.
- A robust alternative is the *Clustered Covariance Matrix* estimator (CCM; cf. Arellano, 1987):

$$\Sigma = (Z'Z)^{-1} \left(\sum_{s=1}^{N} e'_s e_s\right) (Z'Z)^{-1}.$$

where

Z Matrix of independent variables (i.e. A_s , B_t and D_{st}) with NT vectors z_{st} .

$$e_s \sum_{t=1}^T v_{st} z_{st}.$$

 v_{st} Estimated residuals for state s at time t.

- The estimation procedure that uses SEs computed according to the CCM performs quite well in finite samples.
- Approximately correct size regardless of relationship btw. N and T.
- However, there is still **overrejection** to some extent when the number of states is **small**: Bertrand et al reject H_0 in 8% (11%) of cases using a sample from 10 (6) states.
- Much better than before, but still twice nominal test size.

CCM: Properties II

- Asymptotic properties of CCM estimator for $N \to \infty$ are well known.
- Even without restrictions on the serial dependence, $\hat{\Sigma}$ is \sqrt{N} -consistent and asymptotically normal.
- But in DID studies, we often have **small samples**, in which robust standard errors are **downwards biased**.

Hansen (2007a) derives properties of $\hat{\Sigma}$ for $T \to \infty$, N fixed:

- Even if $\{z_{st}, v_{st}\}$ is a strong mixing sequence (i.e. temporal dependence decreases in distance), $\hat{\Sigma}$ is no longer consistent.
- If Var (z_s) and Σ_s are the same for all s, standard t-statistics will be scaled by a factor of ^(N-1)/_N.
- Thus, using $\left(\frac{N}{N-1}\right)\hat{\Sigma}$ and a t_{N-1} distribution will provide **asymptotically unbiased** inference irrespective of dimension approaching infinity.

Brewer et al (2013): Test Size

- Brewer et al (2013): correct size can be obtained quite easily even when G is low!.
- Consider Model 3. The 'benchmark' is the OLS estimator of $\hat{\beta}$'s standard error, *i.e. assuming that errors are i.i.d.*
- To get cluster-robust standard errors (CRSE), they use Liang and Zeger's (1986) formula to compute a cluster-robust variance matrix.

Brewer et al (2013): Test Size II

- The estimator is consistent and Wald statistics are asymptotically normal as the no. of groups $G \rightarrow \infty$.
- But it is **biased** (SE downward biased).
- The bias can be substantial when G is small.
- One way to *reduce* such bias is to **scale up** the residuals by $\sqrt{\frac{G}{G-1}}$ before plugging them into the CRSE estimator.
- An alternative is to recover empirically the distribution of the *t*-statistic using a bootstrap procedure.
- The wild cluster bootstrap-t procedure by Cameron et al (2008) outperformed other bootstrap-based approaches and works well also with small *G*.

Wild Cluster Bootstrap-t

Cf. Cameron & Miller (2013) A Practitioner's Guide to Cluster-Robust Inference.

- Estimate with OLS, imposing H₀: β₁ = β₁⁰ and recover residual vectors {û₁,..., û_G}.
- **2** Generate pseudo-residuals as $\hat{\mathbf{u}}_{g}^{*} = \hat{\mathbf{u}}_{g}$ or $\hat{\mathbf{u}}_{g}^{*} = -\hat{\mathbf{u}}_{g}$; each with probability 0.5 and the resulting pseudo-sample $\{(\hat{\mathbf{y}}_{1}^{*}, \mathbf{X}_{1}), \dots, (\hat{\mathbf{y}}_{G}^{*}, \mathbf{X}_{G})\}.$
- Generate OLS estimate $\hat{\beta}_{1,b}^*$, standard error $s_{\hat{\beta}_{1,b}^*}$ and Wald statistic $w_b^* = \left(\hat{\beta}_{1,b}^* \beta_1^0\right) / s_{\hat{\beta}_{1,b}^*}$.
- Repeat for $b = 1, \ldots, B$.
- So Reject H_0 at level α if $w \notin [w_{\alpha/2}, w_{1-\alpha/2}]$.

Brewer et al address both serial correlation and within-group correlation in the following steps:

- Aggregate data on state-year level.
- Apply a scaling factor to the residuals: $\sqrt{\frac{G}{G-1}}$.
- Plug the scaled residuals into the cluster-robust variance-covariance matrix to get cluster-robust standard errors (CRSE).
- Use critical values from a t distribution with d.o.f. correction: t_{G-1} instead of a standard normal.

Experimental Design

- They use the same data as Betrand et al on the period 1979-2008 and placebo law changes with tests of nominal 5% size.
- Monte Carlo simulations to show that their procedure allows to build tests with the intended test size.
- Resample states with replacement; half of the states are 'treated'.
- They use OLS and FGLS and compare rejection rates, assuming different inference methods and different number of groups:
 - Errors i.i.d.
 - **2** CRSE, unscaled residuals and N(0, 1)
 - **③** CRSE, unscaled residuals and t_{G-1}
 - CRSE, scaled residuals and N(0,1)
 - **(5)** CRSE, scaled residuals and t_{G-1}
 - Wild cluster bootstrap-t
 - 6, 10, 20, 50 states resampled.

Experimental Design II

- The purpose is to compare the performance of the different methods in terms of both Type I and Type II errors.
- Robustness checks:
 - Robustness to mis-specification of the error process: State-time shocks simulated according to an AR(1) process with varying parameters.
 - Vary the fraction of treated groups to check performance in **unbalanced designs**.

Compare Methods

Table 1. Rejection rates when the null is true. Tests of nominal 5% size with placebo treatments in log-earnings data, 5,000 replications. Equation 3 is estimated by OLS.

Inference method	G = 50	G = 20	G = 10	G = 6
i.i.d. errors	0.429	0.424	0.422	0.413
	(0.007)	(0.007)	(0.007)	(0.007)
CRSE, $N(0,1)$ critical values	0.059	0.073	0.110	0.175
	(0.003)	(0.004)	(0.004)	(0.005)
CRSE, t_{G-1} critical values	0.053	0.056	0.066	0.095
	(0.003)	(0.003)	(0.004)	(0.004)
CRSE, $\sqrt{\frac{G}{(G-1)}}$ residuals, $N(0,1)$	0.049	0.056	0.071	0.113
	(0.003)	(0.003)	(0.004)	(0.004)
CRSE, $\sqrt{\frac{G}{(G-1)}}$ residuals, t_{G-1}	0.045	0.041	0.042	0.052
Y X Z	(0.003)	(0.003)	(0.003)	(0.003)
Wild cluster bootstrap-t	0.044	0.041	0.048	0.059
	(0.003)	(0.003)	(0.003)	(0.003)

Simulation standard errors in parentheses. The treatment parameter has a true coefficient of zero. G number of sampled states. Data from 1976 to 2008 inclusive (T = 30).

Imbalance between Groups

Table 2. Rejection rates when the null is true. Tests of nominal 5% size with placebo treatments in log-earnings data, 5,000 replications. Equation 3 is estimated by OLS.

Inference method	G1 = 5	G1 = 4	G1 = 3	<i>G</i> 1 = 2
i.i.d. errors	0.422	0.408	0.409	0.405
	(0.007)	(0.007)	(0.007)	(0.007)
CRSE, $N(0,1)$ critical values	0.110	0.125	0.150	0.241
	(0.004)	(0.005)	(0.005)	(0.006)
CRSE, t_{G-1} critical values	0.066	0.079	0.105	0.191
	(0.004)	(0.004)	(0.004)	(0.006)
CRSE, $\sqrt{\frac{G}{(G-1)}}$ residuals, $N(0,1)$	0.071	0.084	0.113	0.199
	(0.004)	(0.004)	(0.004)	(0.006)
CRSE, $\sqrt{\frac{G}{(G-1)}}$ residuals, t_{G-1}	0.042	0.051	0.074	0.150
Y X Z	(0.003)	(0.003)	(0.004)	(0.005)
Wild cluster bootstrap-t	0.048	0.054	0.052	0.018
	(0.003)	(0.003)	(0.003)	(0.002)

Simulation standard errors in parentheses. The treatment parameter has a true coefficient of zero. G1 the number of treated out of a total of 10 states. Data from 1976 to 2008 inclusive (T = 30).

- The proposed combined modifications (scaled CRSE and t_{S-1} critical values) yield good results in most cases: true test size is within about 1% of nominal test size.
- Large imbalance between the numbers of treatment and control groups ⇒ wild cluster bootstrap-t procedure performs better.
- However, Brewer et al stress that it is relatively easy to obtain the correct test size.
- The main issue is that the **power** to detect real treatment effects with tests of the correct size is **low**.
- It is extremely low when S is small.

(Low) Power with OLS

Table 3. Rejection rates of H_0 : no treatment effect when β is the true value of the treatment parameter. Tests of nominal 5% size with placebo treatments in log-earnings data, 5,000 replications. Comparison of different inference methods.

True effect	Inference	G=50	G = 20	G=10	G = 6
$\beta = 0.02$	$\sqrt{\frac{G}{(G-1)}}$ CRSE, t_{G-1} critical values	0.238	0.134	0.088	0.074
	wild cluster bootstrap-t	(0.006) 0.225 (0.006)	(0.005) 0.125 (0.005)	(0.004) 0.093 (0.004)	(0.004) 0.074 (0.004)
$\beta = 0.05$	$\sqrt{\frac{G}{(G-1)}}$ CRSE, t_{G-1} critical values	0.822	0.513	0.273	0.168
	wild cluster bootstrap-t	(0.005) 0.799 (0.006)	(0.007) 0.490 (0.007)	(0.006) 0.283 (0.006)	(0.005) 0.167 (0.005)
$\beta = 0.10$	$\sqrt{\frac{G}{(G-1)}}$ CRSE, t_{G-1} critical values	1.000	0.919	0.718	0.448
	wild cluster bootstrap-t	(0.000) 0.999 (0.000)	(0.004) 0.898 (0.004)	(0.006) 0.712 (0.006)	(0.007) 0.429 (0.007)
$\beta = 0.15$	$\sqrt{\frac{G}{(G-1)}}$ CRSE, t_{G-1} critical values	1.000	0.995	0.904	0.755
	wild cluster bootstrap-t	(.) 1.000 (.)	(0.001) 0.992 (0.001)	(0.004) 0.896 (0.004)	(0.006) 0.700 (0.006)

Simulation standard errors in parentheses. G number of sampled states. Data from 1976 to 2008 inclusive (T=30).

Minimum Detectable Effect

- The power of the two inference methods is similar
- Power is documented more comprehensively when looking at the minimum effect that would be detected (Minimum Detectable Effect - MDE).
- Recall: the MDE is defined as

$$MDE(\kappa) = \widehat{SE(\hat{\beta})} \left[c_u + p_{1-\kappa}^t \right]$$

where

- κ Level of power.
- $SE(\hat{\beta})$ Scaled CRSE estimate.
 - c_u Upper critical value of the t_{S-1} distribution.
 - $p_{1-\kappa}^t \ (1-\kappa)th$ percentile of the t-statistic under H_0 : no treatment effect.

Minimum Detectable Effect: Illustration

Figure 2 shows the proportion of times for which H_0 : no treatment effect is rejected when the treatment parameter β has a coefficient between 0 and 0.3.

Figure 2. MDE on log-earnings with scaled residuals, t_{G-1} critical values and tests of 5% size, 100,000 replications.

Solution: Increasing power with FGLS

- Hansen (2007b) proposes to use a FGLS estimation under the assumption that the state-year shock follows a **stationary AR(p)** process.
- Coefficients of the AR(p) process can be biased in panel data if the time dimension is short and fixed effects are included (**incidental parameters** problem).
- He also introduces a **bias correction** to account for this.
- He finds that the FGLS estimation clearly dominates OLS also when inference is based on CRSE.
- The FGLS procedure with bias correction (BC-FGLS) is consistent as $S \rightarrow \infty$.

Solution: Increasing power with FGLS II

- Brewer et al use simulations to show that it is possible to retain the correct test size and achieve gains in power by using FGLS instead of OLS.
- Combine BC-FGLS with robust inference technique (scaled CRSE and critical values from *t* with d.o.f. adjustment).
- In fact, the size of the test can be controlled using robust inference, even for small *S*.
- In this way tests have the correct size and FGLS improves power considerably.
- Procedure also robust to mis-specifications of the error process.

A Performance Comparison

Table 4. Rejection rates for tests of nominal 5% size with placebo treatments in log-earnings data, 5,000 replications, comparison of different estimation and inference methods.

Estimation	Inference	G = 50	G = 20	G = 10	G = 6
OLS	$\sqrt{\frac{G}{(G-1)}}$ CRSE, t_{G-1} critical values	0.045	0.041	0.042	0.052
FGLS	(no correction)	(0.003) 0.106 (0.004)	(0.003) 0.101 (0.004)	(0.003) 0.120 (0.005)	(0.003) 0.124 (0.005)
FGLS	$\sqrt{\frac{G}{(G-1)}}$ CRSE, t_{G-1} critical values	0.049	0.045	0.054	0.061
BC-FGLS	V (C -)	(0.003) 0.073 (0.004)	(0.003) 0.070 (0.004)	(0.003) 0.087 (0.004)	(0.003) 0.096 (0.004)
BC-FGLS	$\sqrt{\frac{G}{(G-1)}}$ CRSE, t _{G-1} critical values	0.049	0.045	0.058	0.065
	γ ()	(0.003)	(0.003)	(0.003)	(0.003)

Simulation standard errors in parentheses. The treatment parameter has a true coefficient of zero. G number of sampled states. Data from 1976 to 2008 inclusive (T = 30).

Assumptions about the Serial Correlation Process

Table 5. Rejection rates for tests of nominal 5% size with placebo treatments in log-earnings data, 5,000 replications, 10 groups. Empirical regression residuals (CPS) replaced by a simulated error term generated according to an AR(2) and a MA(1) process.

Estimation	Inference	CPS residuals	Heterogeneous AR(2)	MA(1)
OLS	$\sqrt{\frac{G}{(G-1)}}$ CRSE, t_{G-1}	0.049	0.040	0.052
	V ()	(0.003)	(0.002)	(0.002)
FGLS	(no correction)	0.114	0.101	0.088
		(0.004)	(0.003)	(0.003)
FGLS	$\sqrt{\frac{G}{(G-1)}}$ CRSE, t_{G-1}	0.054	0.055	0.051
	• • •	(0.003)	(0.002)	(0.002)
BC-FGLS		0.081	0.072	0.072
		(0.004)	(0.003)	(0.003)
BC-FGLS	$\sqrt{\frac{G}{(G-1)}}$ CRSE, t_{G-1}	0.056	0.059	0.052
	• • •	(0.003)	(0.002)	(0.002)

Simulation standard errors in parentheses. The treatment parameter has a true coefficient of zero. G number of sampled states. Data from 1976 to 2008 inclusive (T = 30).

Gains in Power

Table 6. Rejection rates for tests of nominal 5% size with a treatment effect of +0.05 in log earnings data

Estimation	Inference	G = 50	G = 20	G = 10	G = 6
OLS	$\sqrt{\frac{G}{(G-1)}}$ CRSE, t_{G-1}	0.810	0.467	0.252	0.168
		(0.006)	(0.007)	(0.006)	(0.005)
FGLS	(no correction)	0.985	0.799	0.573	0.434
		(0.002)	(0.006)	(0.007)	(0.007)
FGLS	$\sqrt{\frac{G}{(G-1)}}$ CRSE, t_{G-1}	0.957	0.670	0.401	0.255
	• • •	(0.003)	(0.007)	(0.007)	(0.006)
BC-FGLS		0.978	0.763	0.513	0.384
		(0.002)	(0.006)	(0.007)	(0.007)
BC-FGLS	$\sqrt{\frac{G}{(G-1)}}$ CRSE, t_{G-1}	0.955	0.696	0.423	0.286
	γ ((0.003)	(0.007)	(0.007)	(0.006)

Simulation standard errors in parentheses. Data from 1976 to 2008 inclusive (T = 30).

Summary and Conclusions

• In DID designs: great risk of underestimating standard errors:

- Dependent variables tend to be positively serially correlated.
- Treatment tends to be serially correlated as well.
- Various methods allow to correct for this problem, e.g. bootstrapping or robust covariance matrix estimators (clustered covariance matrix estimator).
- However, even when test size is correct, one issue is **low power**.
- Brewer et al (2013) get accurate size (easy), then maximise power:
 - Robust inference (CRSE with scaled residuals & t_{S-1} critical values)
 - ...coupled with a FGLS estimation procedure.
- Performs quite well also when S is small and is robust to mis-specifications of the error process.

1. Parametric Methods

- Parametric methods specify an **autocorrelation structure**, which is then estimated:
 - It may be either individual-specific or uniform.
 - This was traditionally the common approach to deal with the problem.
 - OLS residuals used to estimate autocorrelation parameters (ρ).
 - Finally, employ ρ 's in an FGLS regression.
- **Problem:** In short time series, autocorrelation parameters estimated by OLS are biased **downwards**!
- **Consequence:** Over-rejection remains a problem.
- Hansen's bias correction is consistent for $S \rightarrow \infty$ (T fixed).

2. Boostrapping

Simple Bootstrapping.

- **Boostrapping**: a technique used when we are **unable** or **unwilling** to derive the **distribution** of our estimator.
- A simple bootstrapping scheme draws *R* samples of size *N* from our original sample.
- On each of these samples, we run our main regression.
- Our *R* estimated parameters $\hat{\tau}_r$ will mimic the distribution of $\hat{\tau}$.

Block Boostrap

• Block bootstrap preserves the autocorrelation structure by using **series of observations** instead of individual observations.

9 Bootstrap sample is generated by drawing N_s matrices $(\mathbf{Y}_s, \mathbf{V}_s)$:

- Y_s is the entire series of observations for state s.
- V_s is the matrix of *D*, state & time dummies for state *s*.

2 Run OLS on each sample, obtain estimate $\hat{\beta}$ and absolute t statistic

$$t_r = \frac{\left|\hat{\beta}_r - \hat{\beta}\right|}{SE\left(\hat{\beta}_r\right)}$$

(3) t_r approaches the sampling distribution of t as R increases.

- Assessment: Significant improvement over parametric techniques, but many groups required.
- Implemented in Stata by xtreg yvar treatvar xvars, i(id) fe vce(bootstrap, seed(1234)).

3. Ignoring Time Series Information

- Simpler alternative: ignore time series information.
- For laws implemented at the same time in all treated groups, we can simply compute pre- and post-reform averages for each group.
- If not, proceed as follows:

Start with a regression leaving treatment indicator out

$$Y_{st} = A_s + B_t + X_{st}\beta + v_{st}$$

② Calculate before and after averages for treated groups only:

$$\hat{v}_{s}^{0} = \frac{\sum_{t=1}^{T} \mathbb{1} (D_{st} = 0) \, \hat{v}_{st}}{\sum_{t=1}^{T} \mathbb{1} (D_{st} = 0)} = \frac{\sum_{t=1}^{T} \mathbb{1} (D_{st} = 0) \left(Y_{st} - \hat{A}_{s} - \hat{B}_{t} - X_{st}\hat{\beta}\right)}{\sum_{t=1}^{T} \mathbb{1} (D_{st} = 0)}$$
$$\hat{v}_{s}^{1} = \frac{\sum_{t=1}^{T} \mathbb{1} (D_{st} = 1) \, \hat{v}_{st}}{\sum_{t=1}^{T} \mathbb{1} (D_{st} = 1) \left(Y_{st} - \hat{A}_{s} - \hat{B}_{t} - X_{st}\hat{\beta}\right)}{\sum_{t=1}^{T} \mathbb{1} (D_{st} = 1)}$$

Ignoring Time Series Information II

8 Run the regression

$$\hat{v}_{st} = \tau D_{st} + u_{st}$$

- When S is small, need to make a correction to the t statistic.
- Simple aggregation performs well, and residual aggregation has reasonable rejection rates as well.
- But **power** tends to be very low!

4. Empirical VCV Matrix

- Parametric corrections unnecessarily inflexible:
 - S > 1, so we can estimate the covariance matrix more flexibly...
 - ...if we are willing to assume autocorrelation structure is the same...
 - ...and homoskedastic (Kiefer, 1980; Hausman and Kuersteiner, 2008).
- Thus, we express the dataset in vector form, where $\mathbf{Y}_{\mathbf{s}}$ is the $T \times 1$ vector of outcome observations.
- We want to estimate the $T \times T$ matrix Σ .

Empirical VCV Matrix II

• Consider the empirical covariance matrix

$$\widehat{\sum}^{*} = \frac{1}{N} \sum_{s=1}^{N} \left[Q \left(\mathbf{Y}_{s} - \tau D_{s} - X_{s} \beta \right) \right] \left[Q \left(\mathbf{Y}_{s} - \tau D_{s} - X_{s} \beta \right) \right]'$$

where Q performs a within transformation.

• And then use the estimated matrix to compute standard errors:

$$\operatorname{Var}\left(\widehat{\beta}^{*}\right) = \left[\sum_{s=1}^{N} Z_{s}^{\prime} Q\left(\widehat{\Sigma}^{*}\right)^{-1} Q Z_{s}\right]^{-1}$$

- The matrix $\hat{\Sigma}^*$ has rank T-1: we need a **generalised inverse** such as suggested by Hsiao (2003).
- This method performs well when S is large.