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Recap of Last Lecture

Recap of Last Lecture

DID is a well-established, powerful and simple technique.

Simplest case: common time trend is sufficient to achieve
consistency.

The basic 2× 2 model can be extended in various directions:

Multiple groups, multiple periods
Models with covariates
Multiple dimensions (triple difference etc).

Extensions for panel data and limited dependent variables exist, but
can be more tricky.

Synthetic control methods are a convenient way to define credible
control groups at the aggregate level.

The changes-in-changes model relaxes assumptions from the
standard DID model; bases identification on monotonicity and
invariance in the distribution of unobservables.
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Introduction

Introduction

Recent literature on inference in DID designs focus on the problem of
incorrect test size.

In fact, such designs give rise to potential sources of correlation
between observations.

Two main issues:

Treatment status varies only at the group level (‘clustering problem’).
Treatment status typically highly correlated over time (‘policy
autocorrelation’).

If these issues are ignored, inference may be misleading.

Most recent literature shifts the focus to low power issues.

How to address the power-size trade-off?
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Introduction

Type I and Type II Errors

tα/2

Null
Hypothesis

(H0)

Alternative
Hypothesis

(H1)

t0 Type IType II

Figure 1. Type I and Type II Errors.
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Test Size

Problems with Standard Errors

Recall from lecture 2: grouped residuals inflate standard errors.

Consider the simple bivariate case

Yig = α + βxig + eig

where there are G groups and common group errors:

eig = υg + ηig

Component υg captures that group members are exposed to the same
environment: classroom, teacher, weather...

The intraclass correlation coefficient thus given by

ρe =
σ2

υ

σ2
υ + σ2

η

...but the OLS estimator assumes iid residuals (υg = 0).
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Test Size

The Moulton Factor

The Moulton factor: ratio between correct sampling variance and
OLS variance.

V
(

β̂
)

Vc
(

β̂
) = 1 +

[
V
(
ng
)

n̄
+ n̄− 1

]
ρxρe (1)

where

ρx =
∑g ∑j ∑i 6=j

(
xig − x̄

) (
xjg − x̄

)

V
(
xig
)

∑n ng
(
ng − 1

) (2)

Hence, the standard errors get inflated whenever

Intraclass correlation is high (ρe).
Group size varies considerably (V

(
ng
)
).

High intraclass correlation also in xig (ρx)

At least two of these apply by design in a DID setting.
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Test Size

Two Dimensions of the Problem

The general conclusion: OLS underestimates standard errors ⇒
correction needed.

Two dimensions:

(A) Within-group correlation. Shared environment leads to correlated
shocks.

(B) Serial correlation. Outcomes typically exhibit persistence (earnings,
employment, health...).

Additional complication: Number of groups and time periods
typically small.

Inference based on G or T approaching infinity.
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Test Size Within-Group Correlation

A. Within-Group Correlation

Donald and Lang (Rev. Econ. Statist. 2007) discuss inference in DID
and related models.

Focus on within-group correlation of outcomes.

Problem: some explanatory variables (like the treatment indicator)
are constant among all members of a group.

Three traditional solutions:
1 RE FGLS estimation. Estimate covariance matrix, reweight.
2 Correcting standard errors using covariance matrix with common group

errors (Moulton 1990).
3 Cluster (Liang and Zeger 1986).

D&L: These procedures based on G → ∞.

Consider instead aggregating and drawing inference using TG−2.
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Test Size Serial Correlation

B. Serial Correlation, an Example

Bertrand et al (2004) utilise a standard dataset (the Current Population
Survey - CPS):

Yist = As + Bt + τDst + Xistβ + εist (3)

where

Yist Log weekly earnings of females between 25-50 at t 1979 to
2000 in state s.

Dst Treatment indicator = 1 if state s is affected in year t.
As State fixed effects.

Bt Year fixed effects.

Xist Individual-level control variables.

εist Residual variation.

Yis exhibits strong positive serial correlation: ρ1 = 0.51, ρ2 = 0.44
and ρ3 = 0.33.

In total 50× 21 = 1, 050 state-year cells.
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Test Size Serial Correlation

The Problem

OLS gives an unbiased and consistent estimate τ̂ of effect.

Bertrand et al run Monte Carlo simulations using placebo law
changes.

With consistent standard errors, false treatment effect should be
observed in roughly 5% of cases.

But standard errors are often inconsistent.

H0 is rejected in 67.5% of cases when neither within-group
correlation nor serial correlation are taken into account.

Taking within-group correlation into account (cluster or aggregate):
H0 is rejected in 44% of cases.

Serial correlation can matter a lot!

Many approaches to address the problem; none is uniformly better.
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Test Size Serial Correlation

Serial Correlation: Solutions

To evaluate possible solutions to the serial correlation problem, Bertrand
et compare the simulated performance of five different techniques:

1 Parametric methods (AR(p)): perform poorly.

2 Block bootstrap: (sample clusters and calculate t statistic) performs
well when the no. of groups is large.

3 Aggregate (collapse) time series information: reliable also when
the no. of groups is small, on the other hand power is relatively low.

4 Empirical variance-covariance matrix: performs well in panels with
high no. of groups, but assumes cross-sectional homoskedasticity (cf.
Hausman & Kuersteiner, 2008).

5 Arbitrary (clustered) variance-covariance matrix: allows for an
arbitrary correlation patterns over time. Performs well for moderate
no. of groups; for small no. of groups d.o.f. adjustment needed.
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Test Size Serial Correlation

The Clustered Covariance Matrix Estimator

The empirical VCV estimator is consistent only under
homoskedasticity.

A robust alternative is the Clustered Covariance Matrix estimator
(CCM; cf. Arellano, 1987):

Σ = (Z′Z)−1

(
N

∑
s=1

e′ses

)
(Z′Z)−1.

where

Z Matrix of independent variables (i.e. As, Bt and Dst)
with NT vectors zst.

es ∑T
t=1 υstzst.

υst Estimated residuals for state s at time t.
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Test Size Serial Correlation

CCM: Properties

The estimation procedure that uses SEs computed according to the
CCM performs quite well in finite samples.

Approximately correct size regardless of relationship btw. N and T.

However, there is still overrejection to some extent when the number
of states is small: Bertrand et al reject H0 in 8% (11%) of cases
using a sample from 10 (6) states.

Much better than before, but still twice nominal test size.
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Test Size Serial Correlation

CCM: Properties II

Asymptotic properties of CCM estimator for N → ∞ are well known.

Even without restrictions on the serial dependence, Σ̂ is√
N-consistent and asymptotically normal.

But in DID studies, we often have small samples, in which robust
standard errors are downwards biased.
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Test Size Serial Correlation

Hansen Correction

Hansen (2007a) derives properties of Σ̂ for T → ∞, N fixed:

Even if {zst, υst} is a strong mixing sequence (i.e. temporal
dependence decreases in distance), Σ̂ is no longer consistent.

If Var (zs) and Σs are the same for all s, standard t-statistics will be

scaled by a factor of (N−1)
N .

Thus, using
( N

N−1

)
Σ̂ and a tN−1 distribution will provide

asymptotically unbiased inference – irrespective of dimension
approaching infinity.
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Test Size Brewer et al (2013)

Brewer et al (2013): Test Size

Brewer et al (2013): correct size can be obtained quite easily – even
when G is low!.

Consider Model 3. The ‘benchmark’ is the OLS estimator of β̂’s
standard error, i.e. assuming that errors are i.i.d.

To get cluster-robust standard errors (CRSE), they use Liang and
Zeger’s (1986) formula to compute a cluster-robust variance matrix.
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Test Size Brewer et al (2013)

Brewer et al (2013): Test Size II

The estimator is consistent and Wald statistics are asymptotically
normal as the no. of groups G → ∞.

But it is biased (SE downward biased).

The bias can be substantial when G is small.

One way to reduce such bias is to scale up the residuals by
√

G
G−1

before plugging them into the CRSE estimator.

An alternative is to recover empirically the distribution of the
t-statistic using a bootstrap procedure.

The wild cluster bootstrap-t procedure by Cameron et al (2008)
outperformed other bootstrap-based approaches and works well also
with small G.
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Test Size Brewer et al (2013)

Wild Cluster Bootstrap-t

Cf. Cameron & Miller (2013) A Practitioner’s Guide to Cluster-Robust
Inference.

1 Estimate with OLS, imposing H0 : β1 = β0
1 and recover residual

vectors {û1, . . . , ûG}.
2 Generate pseudo-residuals as û∗g = ûg or û∗g = −ûg; each with

probability 0.5 – and the resulting pseudo-sample{
(ŷ∗1 , X1) , . . . , (ŷ∗G, XG)

}
.

3 Generate OLS estimate β̂∗1,b, standard error sβ̂∗1,b
and Wald statistic

w∗b =
(

β̂∗1,b − β0
1

)
/sβ̂∗1,b

.

4 Repeat for b = 1, . . . , B.

5 Reject H0 at level α if w /∈ [wα/2, w1−α/2].
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Test Size Brewer et al (2013)

Summary

Brewer et al address both serial correlation and within-group correlation in
the following steps:

Aggregate data on state-year level.

Apply a scaling factor to the residuals:
√

G
G−1 .

Plug the scaled residuals into the cluster-robust variance-covariance
matrix to get cluster-robust standard errors (CRSE).

Use critical values from a t distribution with d.o.f. correction: tG−1
instead of a standard normal.

M Karlsson (University of Duisburg-Essen) Casuality and Programme Evaluation Summer Semester 2017 20 / 41



Test Size Brewer et al (2013)

Experimental Design

They use the same data as Betrand et al on the period 1979-2008
and placebo law changes with tests of nominal 5% size.

Monte Carlo simulations to show that their procedure allows to build
tests with the intended test size.

Resample states with replacement; half of the states are ‘treated’.

They use OLS and FGLS and compare rejection rates, assuming
different inference methods and different number of groups:

1 Errors i.i.d.
2 CRSE, unscaled residuals and N(0, 1)
3 CRSE, unscaled residuals and tG−1
4 CRSE, scaled residuals and N(0, 1)
5 CRSE, scaled residuals and tG−1
6 Wild cluster bootstrap-t

6, 10, 20, 50 states resampled.
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Test Size Brewer et al (2013)

Experimental Design II

The purpose is to compare the performance of the different methods
in terms of both Type I and Type II errors.

Robustness checks:

Robustness to mis-specification of the error process: State-time shocks
simulated according to an AR(1) process with varying parameters.
Vary the fraction of treated groups to check performance in
unbalanced designs.
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Test Size Brewer et al (2013)

Compare Methods

Table 1. Rejection rates when the null is true. Tests of nominal 5% size with
placebo treatments in log-earnings data, 5,000 replications. Equation 3 is
estimated by OLS.

Inference method G = 50 G = 20 G = 10 G = 6

i.i.d. errors 0.429 0.424 0.422 0.413
(0.007) (0.007) (0.007) (0.007)

CRSE, N(0, 1) critical values 0.059 0.073 0.110 0.175
(0.003) (0.004) (0.004) (0.005)

CRSE, tG−1 critical values 0.053 0.056 0.066 0.095
(0.003) (0.003) (0.004) (0.004)

CRSE,
√

G
(G−1) residuals, N(0, 1) 0.049 0.056 0.071 0.113

(0.003) (0.003) (0.004) (0.004)

CRSE,
√

G
(G−1) residuals, tG−1 0.045 0.041 0.042 0.052

(0.003) (0.003) (0.003) (0.003)
Wild cluster bootstrap-t 0.044 0.041 0.048 0.059

(0.003) (0.003) (0.003) (0.003)

Simulation standard errors in parentheses. The treatment parameter has a true coefficient
of zero. G number of sampled states. Data from 1976 to 2008 inclusive (T = 30).
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Test Size Brewer et al (2013)

Imbalance between Groups

Table 2. Rejection rates when the null is true. Tests of nominal 5% size with
placebo treatments in log-earnings data, 5,000 replications. Equation 3 is
estimated by OLS.

Inference method G1 = 5 G1 = 4 G1 = 3 G1 = 2

i.i.d. errors 0.422 0.408 0.409 0.405
(0.007) (0.007) (0.007) (0.007)

CRSE, N(0, 1) critical values 0.110 0.125 0.150 0.241
(0.004) (0.005) (0.005) (0.006)

CRSE, tG−1 critical values 0.066 0.079 0.105 0.191
(0.004) (0.004) (0.004) (0.006)

CRSE,
√

G
(G−1) residuals, N(0, 1) 0.071 0.084 0.113 0.199

(0.004) (0.004) (0.004) (0.006)

CRSE,
√

G
(G−1) residuals, tG−1 0.042 0.051 0.074 0.150

(0.003) (0.003) (0.004) (0.005)
Wild cluster bootstrap-t 0.048 0.054 0.052 0.018

(0.003) (0.003) (0.003) (0.002)

Simulation standard errors in parentheses. The treatment parameter has a true coefficient
of zero. G1 the number of treated out of a total of 10 states. Data from 1976 to 2008
inclusive (T = 30).
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Low Power

Size vs Power

The proposed combined modifications (scaled CRSE and tS−1 critical
values) yield good results in most cases: true test size is within
about 1% of nominal test size.

Large imbalance between the numbers of treatment and control
groups ⇒ wild cluster bootstrap-t procedure performs better.

However, Brewer et al stress that it is relatively easy to obtain the
correct test size.

The main issue is that the power to detect real treatment effects
with tests of the correct size is low.

It is extremely low when S is small.
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Low Power

(Low) Power with OLS

Table 3. Rejection rates of H0 : no treatment effect when β is the true value of
the treatment parameter. Tests of nominal 5% size with placebo treatments in
log-earnings data, 5,000 replications. Comparison of different inference methods.

True effect Inference G = 50 G = 20 G = 10 G = 6

β = 0.02
√

G
(G−1)CRSE, tG−1 critical values 0.238 0.134 0.088 0.074

(0.006) (0.005) (0.004) (0.004)
wild cluster bootstrap-t 0.225 0.125 0.093 0.074

(0.006) (0.005) (0.004) (0.004)

β = 0.05
√

G
(G−1)CRSE, tG−1 critical values 0.822 0.513 0.273 0.168

(0.005) (0.007) (0.006) (0.005)
wild cluster bootstrap-t 0.799 0.490 0.283 0.167

(0.006) (0.007) (0.006) (0.005)

β = 0.10
√

G
(G−1)CRSE, tG−1 critical values 1.000 0.919 0.718 0.448

(0.000) (0.004) (0.006) (0.007)
wild cluster bootstrap-t 0.999 0.898 0.712 0.429

(0.000) (0.004) (0.006) (0.007)

β = 0.15
√

G
(G−1)CRSE, tG−1 critical values 1.000 0.995 0.904 0.755

(.) (0.001) (0.004) (0.006)
wild cluster bootstrap-t 1.000 0.992 0.896 0.700

(.) (0.001) (0.004) (0.006)

Simulation standard errors in parentheses. G number of sampled states. Data from 1976
to 2008 inclusive (T = 30).
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Low Power

Minimum Detectable Effect

The power of the two inference methods is similar

Power is documented more comprehensively when looking at the
minimum effect that would be detected (Minimum Detectable
Effect - MDE).

Recall: the MDE is defined as

MDE(κ) = ŜE(β̂)
[
cu + pt

1−κ

]

where

κ Level of power.

ŜE(β̂) Scaled CRSE estimate.
cu Upper critical value of the tS−1 distribution.

pt
1−κ (1− κ)th percentile of the t-statistic under H0 : no

treatment effect.
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Low Power

Minimum Detectable Effect: Illustration

Figure 2 shows the proportion of times for which H0 : no treatment effect
is rejected when the treatment parameter β has a coefficient between 0
and 0.3. Figure 1: Minimum detectable e�ects on log-earnings using

√
G/(G− 1)-CRSEs and tG−1

critical values and tests of size 0.05

The Figure shows the proportion of the time that the null hypothesis of no treatment
e�ect is rejected when the treatment parameter has a true coe�cient ranging from 0 to
0.3. Numbers are computed using the results of 100000 Monte Carlo simulations combined
with equation 4, as described in the text. The simulations resample states from
CPS-MORG data, having imposed the sampling restrictions described in the text. Data
from 1979 to 2008 inclusive are sampled (i.e. T = 30). Regressions are run on aggregated
state-year data.

22

Figure 2. MDE on log-earnings with scaled residuals, tG−1 critical values and
tests of 5% size, 100,000 replications.
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Feasible GLS: A Combined Approach

Solution: Increasing power with FGLS

Hansen (2007b) proposes to use a FGLS estimation under the
assumption that the state-year shock follows a stationary AR(p)
process.

Coefficients of the AR(p) process can be biased in panel data if the
time dimension is short and fixed effects are included (incidental
parameters problem).

He also introduces a bias correction to account for this.

He finds that the FGLS estimation clearly dominates OLS also when
inference is based on CRSE.

The FGLS procedure with bias correction (BC-FGLS) is consistent as
S→ ∞.
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Feasible GLS: A Combined Approach

Solution: Increasing power with FGLS II

Brewer et al use simulations to show that it is possible to retain the
correct test size and achieve gains in power by using FGLS instead of
OLS.

Combine BC-FGLS with robust inference technique (scaled CRSE and
critical values from t with d.o.f. adjustment).

In fact, the size of the test can be controlled using robust inference,
even for small S.

In this way tests have the correct size and FGLS improves power
considerably.

Procedure also robust to mis-specifications of the error process.
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Feasible GLS: A Combined Approach

A Performance Comparison

Table 4. Rejection rates for tests of nominal 5% size with placebo treatments in
log-earnings data, 5,000 replications, comparison of different estimation and
inference methods.

Estimation Inference G = 50 G = 20 G = 10 G = 6

OLS
√

G
(G−1)CRSE, tG−1 critical values 0.045 0.041 0.042 0.052

(0.003) (0.003) (0.003) (0.003)
FGLS (no correction) 0.106 0.101 0.120 0.124

(0.004) (0.004) (0.005) (0.005)

FGLS
√

G
(G−1)CRSE, tG−1 critical values 0.049 0.045 0.054 0.061

(0.003) (0.003) (0.003) (0.003)
BC-FGLS 0.073 0.070 0.087 0.096

(0.004) (0.004) (0.004) (0.004)

BC-FGLS
√

G
(G−1)CRSE, tG−1 critical values 0.049 0.045 0.058 0.065

(0.003) (0.003) (0.003) (0.003)

Simulation standard errors in parentheses. The treatment parameter has a true coefficient
of zero. G number of sampled states. Data from 1976 to 2008 inclusive (T = 30).
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Feasible GLS: A Combined Approach

Assumptions about the Serial Correlation Process

Table 5. Rejection rates for tests of nominal 5% size with placebo treatments in
log-earnings data, 5,000 replications, 10 groups. Empirical regression residuals
(CPS) replaced by a simulated error term generated according to an AR(2) and a
MA(1) process.

Estimation Inference CPS residuals Heterogeneous AR(2) MA(1)

OLS
√

G
(G−1) CRSE, tG−1 0.049 0.040 0.052

(0.003) (0.002) (0.002)
FGLS (no correction) 0.114 0.101 0.088

(0.004) (0.003) (0.003)

FGLS
√

G
(G−1) CRSE, tG−1 0.054 0.055 0.051

(0.003) (0.002) (0.002)
BC-FGLS 0.081 0.072 0.072

(0.004) (0.003) (0.003)

BC-FGLS
√

G
(G−1) CRSE, tG−1 0.056 0.059 0.052

(0.003) (0.002) (0.002)

Simulation standard errors in parentheses. The treatment parameter has a true coefficient
of zero. G number of sampled states. Data from 1976 to 2008 inclusive (T = 30).
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Feasible GLS: A Combined Approach

Gains in Power

Table 6. Rejection rates for tests of nominal 5% size with a treatment effect of
+0.05 in log earnings data

Estimation Inference G = 50 G = 20 G = 10 G = 6

OLS
√

G
(G−1) CRSE, tG−1 0.810 0.467 0.252 0.168

(0.006) (0.007) (0.006) (0.005)
FGLS (no correction) 0.985 0.799 0.573 0.434

(0.002) (0.006) (0.007) (0.007)

FGLS
√

G
(G−1) CRSE, tG−1 0.957 0.670 0.401 0.255

(0.003) (0.007) (0.007) (0.006)
BC-FGLS 0.978 0.763 0.513 0.384

(0.002) (0.006) (0.007) (0.007)

BC-FGLS
√

G
(G−1) CRSE, tG−1 0.955 0.696 0.423 0.286

(0.003) (0.007) (0.007) (0.006)

Simulation standard errors in parentheses. Data from 1976 to 2008 inclusive (T = 30).
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Summary and Conclusions

Summary and Conclusions

In DID designs: great risk of underestimating standard errors:

Dependent variables tend to be positively serially correlated.
Treatment tends to be serially correlated as well.

Various methods allow to correct for this problem, e.g. bootstrapping
or robust covariance matrix estimators (clustered covariance matrix
estimator).

However, even when test size is correct, one issue is low power.

Brewer et al (2013) – get accurate size (easy), then maximise power:

Robust inference (CRSE with scaled residuals & tS−1 critical values)
...coupled with a FGLS estimation procedure.

Performs quite well also when S is small and is robust to
mis-specifications of the error process.
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Appendix Alternative Solutions to Serial Correlation

1. Parametric Methods

Parametric methods specify an autocorrelation structure, which is
then estimated:

It may be either individual-specific or uniform.
This was traditionally the common approach to deal with the problem.
OLS residuals used to estimate autocorrelation parameters (ρ).
Finally, employ ρ’s in an FGLS regression.

Problem: In short time series, autocorrelation parameters estimated
by OLS are biased downwards!

Consequence: Over-rejection remains a problem.

Hansen’s bias correction is consistent for S→ ∞ (T fixed).
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Appendix Alternative Solutions to Serial Correlation

2. Boostrapping

Simple Bootstrapping.

Boostrapping: a technique used when we are unable or unwilling to
derive the distribution of our estimator.

A simple bootstrapping scheme draws R samples of size N from our
original sample.

On each of these samples, we run our main regression.

Our R estimated parameters τ̂r will mimic the distribution of τ̂.
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Appendix Alternative Solutions to Serial Correlation

Block Boostrap

Block bootstrap preserves the autocorrelation structure by using
series of observations instead of individual observations.

1 Bootstrap sample is generated by drawing Ns matrices (Ys, Vs):
Ys is the entire series of observations for state s.
Vs is the matrix of D, state & time dummies for state s.

2 Run OLS on each sample, obtain estimate β̂ and absolute t statistic

tr =

∣∣β̂r − β̂
∣∣

SE
(

β̂r
)

3 tr approaches the sampling distribution of t as R increases.

Assessment: Significant improvement over parametric techniques,
but many groups required.

Implemented in Stata by xtreg yvar treatvar xvars, i(id) fe

vce(bootstrap, seed(1234)).
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Appendix Alternative Solutions to Serial Correlation

3. Ignoring Time Series Information

Simpler alternative: ignore time series information.

For laws implemented at the same time in all treated groups, we
can simply compute pre- and post-reform averages for each group.

If not, proceed as follows:
1 Start with a regression leaving treatment indicator out

Yst = As + Bt + Xstβ + υst

2 Calculate before and after averages for treated groups only:

ˆ̄υ0
s =

∑T
t=1 1 (Dst = 0) υ̂st

∑T
t=1 1 (Dst = 0)

=
∑T

t=1 1 (Dst = 0)
(
Yst − Âs − B̂t − Xst β̂

)

∑T
t=1 1 (Dst = 0)

ˆ̄υ1
s =

∑T
t=1 1 (Dst = 1) υ̂st

∑T
t=1 1 (Dst = 1)

=
∑T

t=1 1 (Dst = 1)
(
Yst − Âs − B̂t − Xst β̂

)

∑T
t=1 1 (Dst = 1)
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Appendix Alternative Solutions to Serial Correlation

Ignoring Time Series Information II

3 Run the regression
ˆ̄υst = τDst + ust

When S is small, need to make a correction to the t statistic.

Simple aggregation performs well, and residual aggregation has
reasonable rejection rates as well.

But power tends to be very low!
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Appendix Alternative Solutions to Serial Correlation

4. Empirical VCV Matrix

Parametric corrections unnecessarily inflexible:

S > 1, so we can estimate the covariance matrix more flexibly...
...if we are willing to assume autocorrelation structure is the same...
...and homoskedastic (Kiefer, 1980; Hausman and Kuersteiner, 2008).

Thus, we express the dataset in vector form, where Ys is the T × 1
vector of outcome observations.

We want to estimate the T × T matrix Σ.
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Appendix Alternative Solutions to Serial Correlation

Empirical VCV Matrix II

Consider the empirical covariance matrix

∑̂
∗
=

1
N

N

∑
s=1

[Q (Ys − τDs − Xsβ)] [Q (Ys − τDs − Xsβ)]′

where Q performs a within transformation.

And then use the estimated matrix to compute standard errors:

Var
(

β̂∗
)
=

[
N

∑
s=1

Z′sQ
(
∑̂
∗)−1

QZs

]−1

The matrix ∑̂
∗

has rank T − 1: we need a generalised inverse such
as suggested by Hsiao (2003).

This method performs well when S is large.
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