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Recap of Last Lecture

Recap of Last Lecture

@ DID is a well-established, powerful and simple technique.

@ Simplest case: common time trend is sufficient to achieve
consistency.
@ The basic 2 X 2 model can be extended in various directions:
o Multiple groups, multiple periods
e Models with covariates
e Multiple dimensions (triple difference etc).
@ Extensions for panel data and limited dependent variables exist, but
can be more tricky.
@ Synthetic control methods are a convenient way to define credible
control groups at the aggregate level.
@ The changes-in-changes model relaxes assumptions from the
standard DID model; bases identification on monotonicity and
invariance in the distribution of unobservables.
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Introduction

Introduction

@ Recent literature on inference in DID designs focus on the problem of
incorrect test size.

@ In fact, such designs give rise to potential sources of correlation
between observations.
@ Two main issues:

o Treatment status varies only at the group level (‘clustering problem’).
e Treatment status typically highly correlated over time (‘policy
autocorrelation’).

o If these issues are ignored, inference may be misleading.
@ Most recent literature shifts the focus to low power issues.

@ How to address the power-size trade-off?
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Introduction

Type | and Type Il Errors

Null
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Figure 1. Type | and Type Il Errors.
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Test Size

Problems with Standard Errors

Recall from lecture 2: grouped residuals inflate standard errors.

Consider the simple bivariate case

Yig = x4+ ﬁxig + Cig

where there are G groups and common group errors:
eig = Ug + 1lig

@ Component v, captures that group members are exposed to the same
environment: classroom, teacher, weather...

@ The intraclass correlation coefficient thus given by
_ %
Pe= 2} o2

@ ...but the OLS estimator assumes iid residuals (v = 0).
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Test Size
The Moulton Factor

@ The Moulton factor: ratio between correct sampling variance and
OLS variance.

V(p)
Ve (B)

=14+

Wsang)—kﬁ—ll OxpPe (1)

@ where

_ Lo X Yigj (xig — %) (x5 — %)
V (xig) X ng (ng — 1)

@ Hence, the standard errors get inflated whenever

o Intraclass correlation is high (pe).
o Group size varies considerably (V (ng)).
o High intraclass correlation also in xj¢ (ox)

Px

@ At least two of these apply by design in a DID setting.
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Test Size

Two Dimensions of the Problem

@ The general conclusion: OLS underestimates standard errors =
correction needed.
@ Two dimensions:
(A) Within-group correlation. Shared environment leads to correlated
shocks.
(B) Serial correlation. Outcomes typically exhibit persistence (earnings,
employment, health...).
o Additional complication: Number of groups and time periods
typically small.

@ Inference based on G or T approaching infinity.
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Test Size Within-Group Correlation

A. Within-Group Correlation

e Donald and Lang (Rev. Econ. Statist. 2007) discuss inference in DID
and related models.
@ Focus on within-group correlation of outcomes.
@ Problem: some explanatory variables (like the treatment indicator)
are constant among all members of a group.
@ Three traditional solutions:
@ RE FGLS estimation. Estimate covariance matrix, reweight.
@ Correcting standard errors using covariance matrix with common group
errors (Moulton 1990).
© Cluster (Liang and Zeger 1986).

@ D&L: These procedures based on G — 0.

o Consider instead aggregating and drawing inference using Tg_».
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Test Size  Serial Correlation

B. Serial Correlation, an Example

Bertrand et al (2004) utilise a standard dataset (the Current Population
Survey - CPS):

Yist - As + Bt + TDst + Xistﬁ + €ist (3)
where
Yiss Log weekly earnings of females between 25-50 at f 1979 to
2000 in state s.

Dg; Treatment indicator = 1 if state s is affected in year t.

A State fixed effects.

B; Year fixed effects.
Xist Individual-level control variables.

€;s; Residual variation.

@ Y, exhibits strong positive serial correlation: p; = 0.51, p, = 0.44
and p3 = 0.33.
@ In total 50 x 21 = 1,050 state-year cells.
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Test Size  Serial Correlation

The Problem

@ OLS gives an unbiased and consistent estimate T of effect.

@ Bertrand et al run Monte Carlo simulations using placebo law
changes.

@ With consistent standard errors, false treatment effect should be
observed in roughly 5% of cases.

@ But standard errors are often inconsistent.

@ Hj is rejected in 67.5% of cases when neither within-group
correlation nor serial correlation are taken into account.

e Taking within-group correlation into account (cluster or aggregate):
Hj is rejected in 44% of cases.

@ Serial correlation can matter a lot!

@ Many approaches to address the problem; none is uniformly better.
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Test Size  Serial Correlation

Serial Correlation: Solutions

To evaluate possible solutions to the serial correlation problem, Bertrand
et compare the simulated performance of five different techniques:

@ Parametric methods (AR(p)): perform poorly.

@ Block bootstrap: (sample clusters and calculate t statistic) performs
well when the no. of groups is large.

© Aggregate (collapse) time series information: reliable also when
the no. of groups is small, on the other hand power is relatively low.

@ Empirical variance-covariance matrix: performs well in panels with
high no. of groups, but assumes cross-sectional homoskedasticity (cf.
Hausman & Kuersteiner, 2008).

© Arbitrary (clustered) variance-covariance matrix: allows for an

arbitrary correlation patterns over time. Performs well for moderate
no. of groups; for small no. of groups d.o.f. adjustment needed.
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Test Size  Serial Correlation

The Clustered Covariance Matrix Estimator

@ The empirical VCV estimator is consistent only under
homoskedasticity.

@ A robust alternative is the Clustered Covariance Matrix estimator
(CCM; cf. Arellano, 1987):

Y= (z2'2)7! <i e;es> (z'z)~L.
s=1

where
Z Matrix of independent variables (i.e. Ag, Bt and Dg)
with NT vectors z;.

T
€s Y1 UstZst-
vs; Estimated residuals for state s at time ¢.
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Test Size  Serial Correlation

CCM: Properties

@ The estimation procedure that uses SEs computed according to the
CCM performs quite well in finite samples.

@ Approximately correct size regardless of relationship btw. N and T.

@ However, there is still overrejection to some extent when the number
of states is small: Bertrand et al reject Hy in 8% (11%) of cases
using a sample from 10 (6) states.

@ Much better than before, but still twice nominal test size.
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Test Size  Serial Correlation

CCM: Properties Il

@ Asymptotic properties of CCM estimator for N — oo are well known.

o Even without restrictions on the serial dependence, 3 is
v/ N-consistent and asymptotically normal.

@ But in DID studies, we often have small samples, in which robust
standard errors are downwards biased.
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Test Size  Serial Correlation

Hansen Correction

Hansen (2007a) derives properties of 3 for T — oo, N fixed:
e Even if {zs, vs} is a strong mixing sequence (i.e. temporal
dependence decreases in distance), X is no longer consistent.

o If Var (z,) and X are the same for all s, standard f-statistics will be

(N-1)
scaled by a factor of ~——.

@ Thus, using (%) % and a ty_1 distribution will provide
asymptotically unbiased inference — irrespective of dimension
approaching infinity.
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Test Size ~ Brewer et al (2013)

Brewer et al (2013): Test Size

@ Brewer et al (2013): correct size can be obtained quite easily — even
when G is low!.

o Consider Model 3. The ‘benchmark’ is the OLS estimator of B's
standard error, i.e. assuming that errors are i.i.d.

@ To get cluster-robust standard errors (CRSE), they use Liang and
Zeger's (1986) formula to compute a cluster-robust variance matrix.
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Test Size ~ Brewer et al (2013)

Brewer et al (2013): Test Size Il

@ The estimator is consistent and Wald statistics are asymptotically
normal as the no. of groups G — 0.

e But it is biased (SE downward biased).

@ The bias can be substantial when G is small.

@ One way to reduce such bias is to scale up the residuals by \/g
before plugging them into the CRSE estimator.

@ An alternative is to recover empirically the distribution of the
t-statistic using a bootstrap procedure.
@ The wild cluster bootstrap-t procedure by Cameron et al (2008)

outperformed other bootstrap-based approaches and works well also
with small G.
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Test Size ~ Brewer et al (2013)

Wild Cluster Bootstrap-t

Cf. Cameron & Miller (2013) A Practitioner’s Guide to Cluster-Robust
Inference.

© Estimate with OLS, imposing Hy : f1 = BY and recover residual
vectors {d@iy,...,0g}.

@ Generate pseudo-residuals as ﬁ;‘, = {ig or ﬁ; = —ig; each with

probability 0.5 — and the resulting pseudo-sample
{(S\’szl);---/ (y*G'XG)}'

© Generate OLS estimate be standard error Sps, and Wald statistic
wy = (be - .3(1)) /g,

Q Repeat forb=1,...,B.

O Reject Hy at level a if w & [wy /2, w1_4/2].
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Test Size ~ Brewer et al (2013)

Summary

Brewer et al address both serial correlation and within-group correlation in
the following steps:

@ Aggregate data on state-year level.

@ Apply a scaling factor to the residuals: ./%.

@ Plug the scaled residuals into the cluster-robust variance-covariance
matrix to get cluster-robust standard errors (CRSE).

@ Use critical values from a t distribution with d.o.f. correction: tg_q
instead of a standard normal.

M Karlsson (University of Duisburg-Essen) Casuality and Programme Evaluation Summer Semester 2017 20 / 41



Test Size ~ Brewer et al (2013)

Experimental Design

@ They use the same data as Betrand et al on the period 1979-2008
and placebo law changes with tests of nominal 5% size.

@ Monte Carlo simulations to show that their procedure allows to build
tests with the intended test size.

@ Resample states with replacement; half of the states are ‘treated’.

@ They use OLS and FGLS and compare rejection rates, assuming
different inference methods and different number of groups:

@ Errorsi.id.

@ CRSE, unscaled residuals and N(0,1)
© CRSE, unscaled residuals and tg_q
© CRSE, scaled residuals and N(0,1)
© CRSE, scaled residuals and fg_1

@ Wild cluster bootstrap-t

e 6, 10, 20, 50 states resampled.
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Test Size ~ Brewer et al (2013)

Experimental Design Il

@ The purpose is to compare the performance of the different methods
in terms of both Type | and Type Il errors.
@ Robustness checks:
o Robustness to mis-specification of the error process: State-time shocks
simulated according to an AR(1) process with varying parameters.
e Vary the fraction of treated groups to check performance in
unbalanced designs.
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Test Size ~ Brewer et al (2013)

Compare Methods

Table 1. Rejection rates when the null is true. Tests of nominal 5% size with
placebo treatments in log-earnings data, 5,000 replications. Equation 3 is
estimated by OLS.

Inference method G=50 G=20 G=10 G=6
i.i.d. errors 0.429 0.424 0.422 0.413
(0.007) (0.007) (0.007) (0.007)
CRSE, N(0,1) critical values 0.059 0.073 0.110 0.175
(0.003) (0.004) (0.004) (0.005)
CRSE, tg_1 critical values 0.053 0.056 0.066 0.095

(0.003) (0.003) (0.004) (0.004)
CRSE, | /%5 residuals, N(0,1)  0.049 ~ 0.056 0071 0113
(0.003) (0.003) (0.004) (0.004)

CRSE, (G—E]) residuals, tg_1 0.045 0.041 0.042 0.052
(0.003) (0.003) (0.003) (0.003)
Wild cluster bootstrap-t 0.044 0.041 0.048 0.059

(0.003) (0.003) (0.003) (0.003)

Simulation standard errors in parentheses. The treatment parameter has a true coefficient
of zero. G number of sampled states. Data from 1976 to 2008 inclusive (T = 30).
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Test Size ~ Brewer et al (2013)

Imbalance between Groups

Table 2. Rejection rates when the null is true. Tests of nominal 5% size with
placebo treatments in log-earnings data, 5,000 replications. Equation 3 is
estimated by OLS.

Inference method Gl=5 Gl=4 G1=3 Gl=2
i.i.d. errors 0422 0408 0409  0.405
(0.007) (0.007) (0.007) (0.007)
CRSE, N(0,1) critical values 0110 0125 0150  0.241
(0.004) (0.005) (0.005) (0.006)
CRSE, tg_1 critical values 0066 0079 0105  0.191

(0.004) (0.004) (0.004) (0.006)

CRSE, (G 7 residuals, N(0,1)  0.071 0.084 0.113 0.199
(0.004) (0.004) (0.004) (0.006)
CRSE, (G 7 residuals, fg_1 0.042 0.051 0.074 0.150
(0.003) (0.003) (0.004) (0.005)
Wild cluster bootstrap-t 0.048 0.054 0.052 0.018

(0.003) (0.003) (0.003) (0.002)

Simulation standard errors in parentheses. The treatment parameter has a true coefficient
of zero. G1 the number of treated out of a total of 10 states. Data from 1976 to 2008
inclusive (T = 30).

M Karlsson (University of Duisburg-Essen) Casuality and Programme Evaluation Summer Semester 2017 24 / 41



Low Power

Size vs Power

@ The proposed combined modifications (scaled CRSE and tg_q critical
values) yield good results in most cases: true test size is within
about 1% of nominal test size.

@ Large imbalance between the numbers of treatment and control
groups = wild cluster bootstrap-t procedure performs better.

@ However, Brewer et al stress that it is relatively easy to obtain the
correct test size.

@ The main issue is that the power to detect real treatment effects
with tests of the correct size is low.

o It is extremely low when S is small.
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Low Power

(Low) Power with OLS

Table 3. Rejection rates of Hy : no treatment effect when B is the true value of
the treatment parameter. Tests of nominal 5% size with placebo treatments in
log-earnings data, 5,000 replications. Comparison of different inference methods.

True effect Inference G=50 G=20 G=10 G=6
B =0.02 o CRSE, tg-q critical values 0238 0.134  0.088  0.074
(0.006) (0.005) (0.004) (0.004)

wild cluster bootstrap-t 0.225 0.125 0.093 0.074

(0.006) (0.005) (0.004) (0.004)
B=005 [ZEHCRSE, tg 1 critical values  0.822 0513 0273 0.168
(0.005) (0.007) (0.006) (0.005)

wild cluster bootstrap-t 0.799 0.490 0.283 0.167

(0.006) (0.007) (0.006) (0.005)

B=0.10 ﬁCRSE, tg_1 critical values  1.000 0.919 0.718 0.448
(0.000) (0.004) (0.006) (0.007)

wild cluster bootstrap-t 0.999 0.898 0.712 0.429

(0.000) (0.004) (0.006) (0.007)

B =015 ﬁCRSE, tg—1 critical values  1.000 0.995 0.904 0.755
() (0.001) (0.004) (0.006)

wild cluster bootstrap-t 1.000 0.992 0.896 0.700

() (0.001) (0.004) (0.006)

Simulation standard errors in parentheses. G number of sampled states. Data from 1976
to 2008 inclusive (T = 30).
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Low Power
Minimum Detectable Effect

@ The power of the two inference methods is similar

@ Power is documented more comprehensively when looking at the
minimum effect that would be detected (Minimum Detectable
Effect - MDE).

@ Recall: the MDE is defined as

o —

MDE(x) = SE(B) [cu + ph ]

where
K Level of power.

—

SE(B) Scaled CRSE estimate.
¢, Upper critical value of the tg_1 distribution.
p}_. (1 —x)th percentile of the t-statistic under Hy : no
treatment effect.
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Low Power

Minimum Detectable Effect: Illustration

Figure 2 shows the proportion of times for which Hy : no treatment effect

is rejected when the treatment parameter 8 has a coefficient between 0
and 0.3.

Power (%)
ao 60 80 100

20

0 A 2 3
Minimum detectable effect
—— S0groups  ----- 20 groups
————— 10 groups 6 groups

Figure 2. MDE on log-earnings with scaled residuals, t;_1 critical values and
tests of 5% size, 100,000 replications.
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Feasible GLS: A Combined Approach

Solution: Increasing power with FGLS

@ Hansen (2007b) proposes to use a FGLS estimation under the
assumption that the state-year shock follows a stationary AR(p)
process.

o Coefficients of the AR(p) process can be biased in panel data if the
time dimension is short and fixed effects are included (incidental
parameters problem).

@ He also introduces a bias correction to account for this.

@ He finds that the FGLS estimation clearly dominates OLS also when
inference is based on CRSE.

@ The FGLS procedure with bias correction (BC-FGLS) is consistent as
S — oo.
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Feasible GLS: A Combined Approach

Solution: Increasing power with FGLS Il

@ Brewer et al use simulations to show that it is possible to retain the
correct test size and achieve gains in power by using FGLS instead of

OLS.

e Combine BC-FGLS with robust inference technique (scaled CRSE and
critical values from f with d.o.f. adjustment).

@ In fact, the size of the test can be controlled using robust inference,
even for small S.

@ In this way tests have the correct size and FGLS improves power
considerably.

@ Procedure also robust to mis-specifications of the error process.
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Feasible GLS: A Combined Approach

A Performance Comparison

Table 4. Rejection rates for tests of nominal 5% size with placebo treatments in
log-earnings data, 5,000 replications, comparison of different estimation and

inference methods.

Estimation Inference G=50 G=20 G=10 G=
oLS (GGjCRSE, tc_q critical values 0.045  0.041  0.042  0.052
(0.003) (0.003) (0.003) (0.003)
FGLS (no correction) 0.106 0.101 0.120  0.124
(0.004) (0.004) (0.005) (0.005)
FGLS ﬁCRSE, tg_1 critical values 0.049 0.045 0.054 0.061
(0.003) (0.003) (0.003) (0.003)
BC-FGLS 0.073 0.070 0.087 0.096
(0.004) (0.004) (0.004) (0.004)
BC-FGLS ﬁCRSE, tg_1 critical values  0.049 0.045 0.058 0.065
(0.003) (0.003) (0.003) (0.003)

Simulation standard errors in parentheses. The treatment parameter has a true coefficient
of zero. G number of sampled states. Data from 1976 to 2008 inclusive (T = 30).
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Feasible GLS: A Combined Approach

Assumptions about the Serial Correlation Process

Table 5. Rejection rates for tests of nominal 5% size with placebo treatments in
log-earnings data, 5,000 replications, 10 groups. Empirical regression residuals
(CPS) replaced by a simulated error term generated according to an AR(2) and a
MA(1) process.

Estimation Inference CPS residuals  Heterogeneous AR(2) MA(1)
oLS ﬁ CRSE, tg_1 0.049 0.040 0.052
(0.003) (0.002) (0.002)
FGLS (no correction) 0.114 0.101 0.088
(0.004) (0.003) (0.003)
FGLS @1y CRSE, t61 0.054 0.055 0.051
(0.003) (0.002) (0.002)
BC-FGLS 0.081 0.072 0.072
(0.004) (0.003) (0.003)
BC-FGLS ,/ (G§1> CRSE, tg-1 0.056 0.059 0.052
(0.003) (0.002) (0.002)

Simulation standard errors in parentheses. The treatment parameter has a true coefficient
of zero. G number of sampled states. Data from 1976 to 2008 inclusive (T = 30).
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Feasible GLS: A Combined Approach

Gains in Power

Table 6. Rejection rates for tests of nominal 5% size with a treatment effect of
+0.05 in log earnings data

Estimation Inference G=50 G=20 G=10 G=6
OLS (G—ED CRSE, tc_1 0.810  0.467 0.252 0.168
(0.006)  (0.007) (0.006) (0.005)
FGLS (no correction) 0.985  0.799 0.573 0.434
(0.002)  (0.006) (0.007) (0.007)
FGLS (G—ﬁl) CRSE, tg_1 0957  0.670 0.401 0.255
(0.003)  (0.007) (0.007) (0.006)
BC-FGLS 0.978  0.763 0.513 0.384
(0.002)  (0.006) (0.007) (0.007)
BC-FGLS (G—El) CRSE, tc_; 0955  0.696 0.423 0.286
(0.003)  (0.007) (0.007) (0.006)

Simulation standard errors in parentheses. Data from 1976 to 2008 inclusive (T = 30).
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Summary and Conclusions

Summary and Conclusions

@ In DID designs: great risk of underestimating standard errors:
o Dependent variables tend to be positively serially correlated.
e Treatment tends to be serially correlated as well.

°

Various methods allow to correct for this problem, e.g. bootstrapping
or robust covariance matrix estimators (clustered covariance matrix
estimator).

@ However, even when test size is correct, one issue is low power.
@ Brewer et al (2013) — get accurate size (easy), then maximise power:
o Robust inference (CRSE with scaled residuals & tg_ critical values)
e ...coupled with a FGLS estimation procedure.
@ Performs quite well also when S is small and is robust to
mis-specifications of the error process.
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Appendix  Alternative Solutions to Serial Correlation

1. Parametric Methods

@ Parametric methods specify an autocorrelation structure, which is
then estimated:

o It may be either individual-specific or uniform.

e This was traditionally the common approach to deal with the problem.
o OLS residuals used to estimate autocorrelation parameters (p).

o Finally, employ p's in an FGLS regression.

@ Problem: In short time series, autocorrelation parameters estimated
by OLS are biased downwards!

o Consequence: Over-rejection remains a problem.

@ Hansen’s bias correction is consistent for S — oo (T fixed).
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Appendix  Alternative Solutions to Serial Correlation

2. Boostrapping

Simple Bootstrapping.
o Boostrapping: a technique used when we are unable or unwilling to
derive the distribution of our estimator.

@ A simple bootstrapping scheme draws R samples of size N from our
original sample.

@ On each of these samples, we run our main regression.
@ Our R estimated parameters T, will mimic the distribution of 7.
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Appendix  Alternative Solutions to Serial Correlation

Block Boostrap

@ Block bootstrap preserves the autocorrelation structure by using
series of observations instead of individual observations.

@ Bootstrap sample is generated by drawing Ns matrices (Y5, Vs):
@ Y; is the entire series of observations for state s.
@ Vg is the matrix of D, state & time dummies for state s.

@ Run OLS on each sample, obtain estimate B and absolute t statistic

1B

- SE(Br)

© 1, approaches the sampling distribution of ¢ as R increases.

@ Assessment: Significant improvement over parametric techniques,
but many groups required.

@ Implemented in Stata by xtreg yvar treatvar xvars, i(id) fe
vce(bootstrap, seed(1234)).
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Appendix  Alternative Solutions to Serial Correlation

3. Ignoring Time Series Information

@ Simpler alternative: ignore time series information.

@ For laws implemented at the same time in all treated groups, we
can simply compute pre- and post-reform averages for each group.
@ If not, proceed as follows:

@ Start with a regression leaving treatment indicator out
Y5t = As + By + Xst,B + Ugt

© Calculate before and after averages for treated groups only:

~

50 — Ly 1 (Dst = 0) 05t _ Liq 1 (Dt = 0) (Yot — As — By — Xaip)
Y1 1(Dst =0) Y1 1(Dst = 0)

63 _ Zthl 1 (Dst = 1) Dst _ Zthl 1 (Dst = 1) (Yst B As B Bt B Xst,@)
Y1 1(Dst =1) Y 1(Dy =1)
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Appendix  Alternative Solutions to Serial Correlation

lgnoring Time Series Information |l

© Run the regression
Ust = TDst + ust

@ When S is small, need to make a correction to the t statistic.

@ Simple aggregation performs well, and residual aggregation has
reasonable rejection rates as well.

o But power tends to be very low!
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Appendix  Alternative Solutions to Serial Correlation

4. Empirical VCV Matrix

@ Parametric corrections unnecessarily inflexible:

e S > 1, so we can estimate the covariance matrix more flexibly...
o ...if we are willing to assume autocorrelation structure is the same...
o ...and homoskedastic (Kiefer, 1980; Hausman and Kuersteiner, 2008).

@ Thus, we express the dataset in vector form, where Yg is the T x 1
vector of outcome observations.

@ We want to estimate the T X T matrix 2.
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Appendix  Alternative Solutions to Serial Correlation

Empirical VCV Matrix Il

o Consider the empirical covariance matrix

L=N

where Q performs a within transformation.

[Q (Ys — D5 — X:B)] [Q (Ys — TDs — Xsp)]'

s=1

@ And then use the estimated matrix to compute standard errors:

-1

v () = | ;20 () oz

@ The matrix i* has rank T — 1: we need a generalised inverse such
as suggested by Hsiao (2003).

@ This method performs well when S is large.
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